Sparse Subspace Clustering with Missing Entries

نویسندگان

  • Congyuan Yang
  • Daniel P. Robinson
  • René Vidal
چکیده

We consider the problem of clustering incomplete data drawn from a union of subspaces. Classical subspace clustering methods are not applicable to this problem because the data are incomplete, while classical low-rank matrix completion methods may not be applicable because data in multiple subspaces may not be low rank. This paper proposes and evaluates two new approaches for subspace clustering and completion. The first one generalizes the sparse subspace clustering algorithm so that it can obtain a sparse representation of the data using only the observed entries. The second one estimates a suitable kernel matrix by assuming a random model for the missing entries and obtains the sparse representation from this kernel. Experiments on synthetic and real data show the advantages and disadvantages of the proposed methods, which all outperform the natural approach (low-rank matrix completion followed by sparse subspace clustering) when the data matrix is high-rank or the percentage of missing entries is large.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical Analysis of Sparse Subspace Clustering with Missing Entries

Sparse Subspace Clustering (SSC) is a popular unsupervised machine learning method for clustering data lying close to a union of low-dimensional linear subspaces; a problem with numerous applications in pattern recognition and computer vision. Even though the behavior of SSC for uncorrupted data is by now well-understood, little is known about its theoretical properties when applied to data wit...

متن کامل

Subspace Segmentation by Successive Approximations: A Method for Low-Rank and High-Rank Data with Missing Entries

We propose a method to reconstruct and cluster incomplete high-dimensional data lying in a union of low-dimensional subspaces. Exploring the sparse representation model, we jointly estimate the missing data while imposing the intrinsic subspace structure. Since we have a non-convex problem, we propose an iterative method to reconstruct the data and provide a sparse similarity affinity matrix. T...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

From subspace clustering to full-rank matrix completion

Subspace clustering is the problem of finding a multi-subspace representation that best fits a collection of points taken from a high-dimensional space. This type of structure occurs naturally in many applications ranging from bioinformatics, image/text clustering to semi-supervised learning. The companion paper [3] shows that robust and tractable subspace clustering is possible with minimal re...

متن کامل

Motion Segmentation via Global and Local Sparse Subspace Optimization

In this paper, we propose a new framework for segmenting feature-based moving objects under affine subspace model. Since the feature trajectories in practice are highdimensional and contain a lot of noise, we firstly apply the sparse PCA to represent the original trajectories with a lowdimensional global subspace, which consists of the orthogonal sparse principal vectors. Subsequently, the loca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015